Machine Learning

Boris Nadion
boris@astrails.com
@borisnadion

@borisnadion boris@astrails.com

astrails

http://astrails.com

awesome web and mobile apps

since 2005

Battle of the Bots: How Al Is Taking Over the World of Cybersecurity

BY EDD GENT ON NOV 09, 2016 | ARTIFICIAL INTELLIGENCE, FEATURED, TECH

Al Revolutionizes Industries, not World Domination

By John N - November 10, 2016

• 173

P 0

f Share on Facebook

Tweet on Twitter

Marketing faces death by algorithm unless it finds a new code

AI-powered devices, such as smart speaker Amazon Echo, will play a role in how brands market to consumers in the future CREDIT: BLOOMBERG FINANCE LP/LUKE MACGREGOR

Google DeepMind's Al learns to play with physical objects

She could teach AI a thing or two

Hard Science End to Illness: Machine Learning Is Revolutionizing How We Prevent Disease im 3dnews

IN BRIEF

- The TeraStructure algorithm can analyze genome sets much larger than current systems can
 efficiently handle, including those as big as 100,000 or 1 million genomes.
- Finding an efficient way to analyze genome databases would allow for personalized healthcare that takes into account any genetic mutations that could exist in a person's DNA.

SHARE

WRITTEN BY

AUTHOR

Jelor Gallego

EDITO

Kristin Houser

Website

f

Samsung's Bet on Artificial Intelligence Is a Good One -- If It Can Pull It Off

terms

Al (artificial intelligence)

- the theory and development of computer systems able to perform tasks that normally require human intelligence, such as visual perception, speech recognition, decision-making, and translation between languages

ML (machine learning)

- is a type of artificial intelligence (AI) that provides computers with the ability to learn without being explicitly programmed. Machine learning focuses on the development of computer programs that can teach themselves to grow and change when exposed to new data.

without being explicitly programmed

FF NN cost function

$$J(\Theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} \sum_{k=1}^{K} y_k^{(i)} \log(h_{\Theta}(x^{(i)}))_k + (1 - y_k^{(i)}) \log(1 - (h_{\Theta}(x^{(i)}))_k) \right]$$

$$h_{\Theta}(x) \in \mathbb{R}^K$$

 $(h_{\Theta}(x))_i = i^{th} \text{ output}$

FF NN Cost Function

$$J(\Theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} \sum_{k=1}^{K} y_k^{(i)} \log(h_{\Theta}(x^{(i)}))_k + (1 - y_k^{(i)}) \log(1 - (h_{\Theta}(x^{(i)}))_k) \right]$$

I'm kidding

$$h_{\Theta}(x) \in \mathbb{R}^K$$

 $(h_{\Theta}(x))_i = i^{th} \text{ output}$

cost function with regularization

$$J(\Theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} \sum_{k=1}^{K} y_k^{(i)} \log(h_{\Theta}(x^{(i)}))_k + (1 - y_k^{(i)}) \log(1 - (h_{\Theta}(x^{(i)}))_k) \right]$$
$$+ \frac{\lambda}{2m} \sum_{l=1}^{L-1} \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} (\Theta_{ji}^{(l)})^2$$

$$h_{\Theta}(x) \in \mathbb{R}^K$$

 $(h_{\Theta}(x))_i = i^{th} \text{ output}$

2 types of ML

supervised learning unsupervised learning

supervised

the training data is labeled, eg. we know the correct answer

unsupervised

the training data is not labeled, eg. we would figure out hidden correlations by ourselves

linear regression

supervised learning

$h_{\theta}(x) = hypothesis$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + ... + \theta_n x_n$$

many features, **n** - number of features

size, sq.m X1	# rooms X2	age X3	price y
80	3	22	2.9M
90	4	24	3.1M
75	3	28	2.5M
110	5	20	3.3M

1 USD = 3.85 NIS

summate the prediction error on training set

Linear Regression Cost Function

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=0}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

minimize J(θ)

funding a minimum of cost function = "learning"

gradient descent

batch, stochastic, etc, or advanced optimization algorithms to find a global (sometimes local) minimum of cost function J α - learning rate, a parameter of gradient descent

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + ... + \theta_n x_n$$

we're ready to predict

features scaling

 $0 \le x \le 1$

size, sq.m	size, sq.m / 110 X1
80	0.72
90	0.81
75	0.68
110	

mean normalization

average value of the feature is ~ 0 -0.5 $\leq x \leq 0.5$

size, sq.m	(size, sq.m / 110) - 0.8025 X ₁
80	-0.0825
90	0.075
75	-0.1226
110	0.1975

matrix manipulations

 $\mathbf{X} = n \times 1 \text{ vector}, \mathbf{\Theta} = n \times 1 \text{ vector}$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + ... + \theta_n x_n$$
$$h_{\theta}(x) = \mathbf{\Theta}^T \mathbf{X}$$

GPU

87.92 +20.15 (29.73%)

After Hours: 87.96 +0.04 (0.05%)

Nov 11, 4:24PM EST

NASDAQ real-time data - Disclaimer Currency in USD Range 78.50 - 88.77 52 week 24.75 - 88.77 Open 79.51 Vol / Avg. 54.22M/8.86M Mkt cap 45.56B P/E 57.88 Div/yield 0.12/0.52 EPS 1.52 Shares 538.00M Beta 1.17 Inst. own 89%

logistic regression

supervised learning

classifier

 \mathscr{A}_2

$$h_{\theta}(x) = g(\mathbf{\Theta}^T \mathbf{X})$$

 $h_{\theta}(X)$ - estimated probability that y = 1 on input X

g(z) - logistic non-linear function

logistic function g(z)

there is a few: sigmoid, tahn, ReLUs, etc

image source: Wikipedia

 $y = \{0, 1\}$

one-vs-all

supervised learning

 \mathscr{A}_2

don't implement it at home

use libsvm, liblinear, and others

neural networks

supervised learning

neuron

feed forward neural network

estimates

multiclass classifiers

logistic unit

logistic function g(z)

there is a few: sigmoid, tahn, ReLUs, etc

image source: Wikipedia

output: probabilities

net with no hidden layers

no hidden layers = one-vs-all logistic regression

cost function

sometimes called loss function of NN, a representation of an error between a real and a predicted value

backprop

backward propagation of errors

gradient descent + backprop

"deep learning" - is training a neural net "deep" - because we have many layers

convolutional neural nets

widely used for image processing and object recognition

recurrent neural nets

widely used for natural language processing

CPU/GPU expensive

The old programmers excuse for legitimately slacking off:

The new programmers excuse for legitimately slacking off:

2008

destination suggestion

tangledpath/ruby-fann

Ruby library for interfacing with FANN (Fast Artificial Neural Network)

```
require './neural_network'
LOCATIONS = [:home, :work, :tennis, :parents]
LOCATIONS_INDEXED = LOCATIONS.map.with_index { |x, i| [x, i] }.to_h
XX = \Gamma
 # week 1
 # 1st day of week, 8am
  [:work, 1, 8], [:tennis, 1, 17], [:home, 1, 20],
  [:work, 2, 8], [:home, 2, 18],
  [:work, 3, 8], [:tennis, 3, 17], [:home, 3, 20],
  [:work, 4, 8], [:home, 4, 18],
  [:work, 5, 8], [:home, 5, 18],
  [:parents, 7, 13], [:home, 7, 18],
 # week 2
  [:work, 1, 8], [:home, 1, 18],
  [:work, 2, 8], [:home, 2, 18],
  [:work, 3, 8], [:tennis, 3, 17], [:home, 3, 20],
  [:work, 4, 8], [:home, 4, 18],
  [:work, 5, 8], [:home, 5, 18],
```

features scaling

```
XX.each do Idestination, day, time!
  yy << LOCATIONS_INDEXED[destination]
  xx << [day.to_f/7, time.to_f/24]
end</pre>
```

 $2 \rightarrow 25 \rightarrow 4$

one hidden layer with 25 units

100% accuracy

on training set

```
[1, 16.5], [1, 17], [1, 17.5], [1, 17.8],
[2, 17], [2, 18.1],
[4, 18],
[6, 23],
[7, 13],
].each do Iday, time!
  res = nn.predict_with_probabilities([
     [day.to_f/7, time.to_f/24]
]).first.
  select {|v| v[0] > 0} # filter zero probabilities
  puts "#{day} #{time} \t #{res.map {|v| [LOCATIONS[v[1]], v[0]]}.inspect}"
end
```

```
1 16.5 [[:tennis , 0.97]]
1 17 [[:tennis , 0.86], [:home , 0.06]]
1 17.5 [[:home , 0.52], [:tennis, 0.49]]
2 17 [[:tennis , 0.85], [:home , 0.06]]
6 23 [[:home , 1.00]]
[:work, 1, 8], [:tennis, 1, 17], [:home, 1, 20],
[:work, 2, 8], [:home, 2, 18],
[:work, 3, 8], [:tennis, 3, 17], [:home, 3, 20],
[:work, 4, 8], [:home, 4, 18],
[:work, 5, 8], [:home, 5, 18],
[:parents, 7, 13], [:home, 7, 18],
# week 2
[:work, 1, 8], [:home, 1, 18],
[:work, 2, 8], [:home, 2, 18],
[:work, 3, 8], [:tennis, 3, 17], [:home, 3, 20],
[:work, 4, 8], [:home, 4, 18],
[:work, 5, 8], [:home, 5, 18],
```

borisnadion/suggested-destination-demo ruby code of the demo

tensorflow

but you will need to learn Python

clustering

unsupervised learning

 $\{X^{(i)}\}$

no labels

X1

anomaly detection

unsupervised learning

Network

collaborative filtering

unsupervised learning

	Jane	Arthur	John
Star Wars VII	5	5	1
Dr. Strange	5	5	?
Arrival	5	?	1

automatic features and their weights detection

based on the user votes

similarity between users and between items

what to google

http://astrails.com

thanks!

Boris Nadion http://astrails.com